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Swmna~: The biomimetic cycZization of I-epi-gaZZicin (‘8) into the e-(lB,Sa)-guaianolide (15) 

is carried out. The stereospecificity of the cycZization is explained in terms of a preferred 

reacting confonation (13). The LvZogenetic implications of this process are discussed. 

It has been postulated that the greater part of the trans-guaianes (3) derive from cis, 

trans-germacradiene precursors (1)) by the anti-Markovnikoff-type trams-antiparallel cyclizatior!! 

Another plausible suggestion for biogenesis of trans-guaianolides was presented by Herz 
2) ; acid- 

induced cyclization of the 4n,5b-epoxide (4) would give the cation (5), showing a stereochemical 

arrangement typical of trans-guaianolides (Scheme I). 
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SCHEME I 

This last route has recently received strong support, since the structural revision of 

bai leyin from a germacrol ide3a) to a melampol ide skeleton, together with the X-ray finding that 

pleniradin3b) represents a trans-guaianol ide, suggest that these two co-occurring lactones 

4) (Baileya pleniradiata) are biogenetically related . 

In a review of melampolides, Fischer and co-workers 
5) suggested that the centre-to- 

centre distance between the two double bonds of (1) is considerably greater than in the four 

possible conformations of a trans,trans-germacradiene. They propose that the trans-fused guaia- 

ne cation (7) is formed from quasi-parallel conformation, via the 4a,5B-epoxy-trans-germa- 

crene (6). 
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In order to evaluate the role played by the cis,trans-germacradiene derivatives in the 

biosynthesis of trans-guaianolides, the cyclization of 1-epi-gallicin (8) has been studied. 

Oxidation of gallicin (9) 6) with active Mn02 yielded the ketone (10) (77%); NaBH& reduction of 

(10) afforded I-epi-gallicin (8)7) (59%), the dihydroketone (12)7) (21%) and gallicin (9) (4%). 

The stereoselectivity of the reaction may be due to the fact that reduction takes place 

through a preferred reacting conformat ion (13). The conformational study of (1O)in solution was 

made using variable temperature PMR and LIS. The PMR spectra were taken at ordinary probe tem- 

perature (+35”C) as none of the spectra1 features changed significantly at temperatures from -60” 

to +6o”c. The addition of Eu(fod)) caused the chemical shifts shown in Figure 1. Slight chemi- 

cal shifts of H-14 and H”-14 in (10) are not compatible with a syn relationship of the carbonyl 

ppm 
4- 

[Eu( fod)3]/10-4 M Fig. 1 
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group and the lO(14) double bond, which suggests the s-trans disposition of the o,B-unsaturated 

ketone. Furthermore, the chemical shift of H-5 suggests the syn-axial disposition of H-5 and 

the carbonyl group at C-l. This data is in agreement with the crown conformation (13); the si- 

face of the carbonyl group at C-l is highly hindered and the attack by hydride ion takes place 

on the re-face, yielding (8). 

I-Epi-gallicin (8) undergoes a biomimetic-type cyclization to trans-guaianolide (15) 

(18%) when treated with TsCl in pyridine. The trams-stereochemistry of the AB ring junction was 

established by comparison with (14)8). The most important differences between the PMR spectra 

of (14) and (15) are the signals of H-14 (two broad singlets in (15); one broad singlet in (14)). 

Compounds (14) and (15) are selectively epoxidated on the 3,4-double bond yielding (16) and (17), 

respectively. The PMR spectra of these compounds only differ in the signals of H-14 (broad 

singlet at 4.92 ppm in (17); two broad singlets at 4.90 and 5.00 in (16))‘). 

The transformation of (8) to trcnzs-guaiane (15) is stereospecific 10) 
and this fact, 

coupled with the impossibility of isolating the intermediate sulfonic ester (ll), strongly 

suggests that the cyclization is carried out in a concerted process with assistance of the 4(5) 

double bond producing the cation (19), via the reacting conformation (IS) 11) . 

As far as we know, this is the first time that a lo-hydroxy-trans-4(5)-10(14)-germacra- 

dien-6,12-olide has been cyclized to form a trans-guaianolide, and it is interesting that the 

stereochemistry of 

guaianol ides pleni r 

-derivative15). 

the cyclization product is the same as is found in the few natural trans-fused 

adin3b), gai 1 lardin 12) , neogai llardin 13) , florilenalin 14) and its dihydro- 

These resu 

proceed via the me 

ts strongly suggest that the biosynthesis of the trans-guaianolides may 

1) ampolide route formulated by Parker et al. . 
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